
Difficult I.Q on Databases, asked to SCTPL level 2 students 2015

Compiled by Prof Rocky Sir Page 1

Do you know the basic memory structures associated with any Oracle Database. (W.r.t 10g / 11g / 12c)?

The basic memory structures associated with Oracle Database include:

 System Global Area (SGA)

The SGA is a group of shared memory structures, known as SGA components, that contain data

and control information for one Oracle Database instance. The SGA is shared by all server and

background processes. Examples of data stored in the SGA include cached data blocks and shared

SQL areas.

 Program Global Area (PGA)

A PGA is a memory region that contains data and control information for a server process. It is

nonshared memory created by Oracle Database when a server process is started. Access to the

PGA is exclusive to the server process. There is one PGA for each server process. Background

processes also allocate their own PGAs. The total PGA memory allocated for all background and

server processes attached to an Oracle Database instance is referred to as the total instance PGA

memory, and the collection of all individual PGAs is referred to as the total instance PGA, or
just instance PGA.

Do you know what read-consistency mechanism in Oracle 12c is?

When DML operations are performed in a transaction, the changes are visible only to the session

performing the DML operations. The changes are visible to other users in the database only when a

COMMIT is issued (or a DDL statement causes an implicit commit).

All data changes made in a transaction are temporary until the transaction is committed. Oracle Database

12c has a read-consistency mechanism to ensure that each user sees the data as it existed at the last

commit.

When DML operations are performed on existing rows (through UPDATE, DELETE, or MERGE operations),

the affected rows are locked by Oracle; therefore, no other user can perform a DML operation on those

rows. The rows updated or deleted by a transaction can be queried by another session.

When changes are committed, they are made permanent to the database. All locks on the affected rows

are released, and all savepoints are removed. The previous state of the data is lost (the undo segments

may be overwritten). All users can view the changed data. When changes are rolled back, data changes

are undone and the previous state of data is restored. All locks on the affected rows are released.

Oracle uses read consistency to make sure you do not see the changes made to data after your query is

started. Also, Oracle uses a locking mechanism to make sure that two different user sessions can’t modify

data in the same row at the same time.

Difficult I.Q on Databases, asked to SCTPL level 2 students 2015

Compiled by Prof Rocky Sir Page 2

How many levels of consistency exist in Oracle?

2 levels: statement-level consistency and transaction-level consistency.

Oracle always uses statement-level consistency, which ensures that the data visible to a statement does

not change during the life of that statement. Transactions can consist of one or more statements. When

used, transaction-level consistency will ensure that the data visible to all statements in a transaction does

not change for the life of the transaction.

How does Oracle implement consistency?

Oracle implements consistency internally through the use of system change numbers (SCNs). An SCN

is a time-oriented, database-internal key. The SCN only increases, never decreases, and represents a

point in time for comparison purposes.

The banking example will help clarify.

Matt starts running a total-balance report against the checking account table at 10:00 a.m.; this report

takes five minutes. During those five minutes, the data he is reporting on changes when Sara transfers

$5,000 from her checking account to her brokerage account. When Matt’s session gets to Sara’s checking-

account record, it will need to reconstruct what the record looked like at 10:00 a.m. Matt’s session will

examine the undo segment that Sara used during her account-transfer transaction and will re-create the

image of what the checking-account table looked like at 10:00 a.m.

Next, at 10:05 a.m., Matt runs a total balance report on the cash in the brokerage account table. If he is

using transaction-level consistency, his session will re-create what the brokerage account table looked like

at 10:00 a.m. (and exclude Sara’s transfer). If Matt’s session is using the default statement-level

consistency, his session will report on what the brokerage account table looked like at 10:05 a.m. (and

include Sara’s transfer).

Oracle never uses locks for reading operations, because reading operations will never block writing

operations. Instead, the undo segments (also known as rollback segments) are used to re-create the

image needed. Undo segments are released for reuse when the transaction writing to them commits or if

undo_management is set to auto and the undo_retention period is exceeded, so sometimes a consistent

image cannot be re-created. When this happens, Oracle raises a “snapshot too old” exception. Using this

example, if Matt’s transaction can’t locate Sara’s transaction in the rollback segments because it was

overwritten, Matt’s transaction will not be able to re-create the 10:00 a.m. image of the table and will fail.

So, in the above example, Oracle internally assigns Matt’s first statement the current SCN when it starts

reading the checking-account table. This starting SCN is compared to each data block’s SCN. If the data-

block SCN is higher (newer), the rollback segments are examined to find the older version of the data.

How many types of types of locks are you aware of? Where and why are they used?

Locks are implemented by Oracle Database 12c to prevent destructive interaction between concurrent

transactions. Locks are acquired automatically by Oracle when a DML statement is executed; no user

intervention or action is needed. Oracle uses the lowest level of restrictiveness when locking data for DML

statements—only the rows affected by the DML operation are locked.

Locks are held for the duration of the transaction. A commit or rollback will release all the locks. There

are two types of locks: explicit and implicit. The locks acquired by Oracle automatically when DML

operations are performed are called implicit locks. There is no implicit lock for SELECT statements.

Difficult I.Q on Databases, asked to SCTPL level 2 students 2015

Compiled by Prof Rocky Sir Page 3

If the user locks data manually, it is called explicit locking. The LOCK TABLE statement

and SELECT…FOR UPDATE statements are used for explicitly locking the data.

The SELECT…FOR UPDATE statement is used to lock specific rows, preventing other sessions from

changing or deleting those locked rows. When the rows are locked, other sessions can select these rows,

but they cannot change or lock these rows. The syntax for this statement is identical to a SELECT

statement, except you append the keywords FOR UPDATE to the statement.

The locks acquired for a SELECT FOR UPDATE will not be released until the transaction ends with a

COMMIT or ROLLBACK, even if no data changes.

SELECT product_id, warehouse_id, quantity_on_hand
FROM oe.inventories
WHERE quantity_on_hand < 5
FOR UPDATE;

The LOCK statement is used to lock an entire table, preventing other sessions from performing most or all

DML on it. Locking can be in either shared or exclusive mode. Shared mode prevents other sessions from

acquiring an exclusive lock but allows other sessions to acquire a shared lock. Exclusive mode prevents

other sessions from acquiring either a shared lock or an exclusive lock. The following is an example of

using the LOCK statement:

LOCK TABLE inventories IN EXCLUSIVE MODE;

What do you understand by this statement:

ALTER TABLE wh01 MODIFY CONSTRAINT pk_wh01 DISABLE NOVALIDATE;

ENABLE and DISABLE affect only future data that will be added or modified in the table. In contrast, the

VALIDATE and NOVALIDATE keywords in the ALTER TABLE statement act on the existing data. Therefore,

a constraint can have four states,

Difficult I.Q on Databases, asked to SCTPL level 2 students 2015

Compiled by Prof Rocky Sir Page 4

By default Oracle checks whether the data conforms to the constraint when the statement is executed. Can you

change this behaviour?

By default, Oracle checks whether the data conforms to the constraint when the statement is executed.

Oracle allows you to change this behavior if the constraint is created using the DEFERRABLE clause (NOT

DEFERRABLE is the default). It specifies that the transaction can set the constraint-checking behavior.

INITIALLY IMMEDIATE specifies that the constraint should be checked for conformance at the end of each

SQL statement (this is the default). INITIALLY DEFERRED specifies that the constraint should be checked

for conformance at the end of the transaction.

The DEFERRABLE status of a constraint cannot be changed using ALTER TABLE MODIFY CONSTRAINT; you

must drop and re-create the constraint. You can change the INITIALLY {DEFERRED|IMMEDIATE} clause

using ALTER TABLE.

If the constraint is DEFERRABLE, you can set the behavior by using the SET CONSTRAINTS command or

by using the ALTER SESSION SET CONSTRAINT command. You can enable or disable deferred constraint

checking by listing all the constraints or by specifying the ALL keyword. The SET CONSTRAINTS command

is used to set the constraint-checking behavior for the current transaction, and the ALTER SESSION

command is used to set the constraintchecking

behavior for the current session.

As an example, let’s create a primary key constraint on the CUSTOMER table and a foreign key constraint

on the ORDERS table as DEFERRABLE. Although the constraints are created as DEFERRABLE, they are not

deferred because of the INITIALLY IMMEDIATE clause.

ALTER TABLE customer ADD CONSTRAINT pk_cust_id

PRIMARY KEY (cust_id) DEFERRABLE
INITIALLY IMMEDIATE;

ALTER TABLE orders ADD CONSTRAINT fk_cust_id

FOREIGN KEY (cust_id)

REFERENCES customer (cust_id)

ON DELETE CASCADE DEFERRABLE;

If you try to add a row to the ORDERS table with a CUST_ID value that is not available in the CUSTOMER

table, Oracle returns an error immediately, even though you plan to add the CUSTOMER row soon. Since

the constraints are verified for conformance as each SQL statement is executed, you must insert the row

in the CUSTOMER table first and then add it to the ORDERS table. Because the constraints are defined as

DEFERRABLE, you can change this behavior by using this command:

SET CONSTRAINTS ALL DEFERRED;

Now you can insert rows to these tables in any order. Oracle checks the constraint conformance only at

commit time.

If you want deferred constraint checking as the default, create or modify the constraint by using

INITIALLY DEFERRED, as in this example:

ALTER TABLE customer MODIFY CONSTRAINT pk_cust_id
INITIALLY DEFERRED;

Difficult I.Q on Databases, asked to SCTPL level 2 students 2015

Compiled by Prof Rocky Sir Page 5

(One of our students, you got selected at BNP Paribas (an MNC bank) was posed the below Question in the
Technical Interview)

You have been provided the following information to create tables and constraints for an application developed
in your company to maintain geographic information:

■■ The COUNTRY table stores the country name and country code. The country code uniquely identifies each country.
The country name must be present.

■■ The STATE table stores the state code, name, and its capital. The country code in this table refers to a valid entry in
the COUNTRY table. The state name must be present. The state code and country code together uniquely identify each
state.

■■ The CITY table stores the city code, name, and population. The city code uniquely identifies each city. The state and
country where the city belongs are also stored in the table, which refers to the STATE table. The city name must be
present.

■■ Each table should have a column identifying the created-on timestamp, with the system date as the default.

■■ The user should not be able to delete from the COUNTRY table if there are records in the STATE table for that
country.

■■ The records in the CITY table should be automatically removed when their corresponding state is removed from the
STATE table.

■■ All foreign and primary key constraints should be provided with meaningful names.

// The problem is solved from a student (Fresher) point of View , Not a database Expert :

Difficult I.Q on Databases, asked to SCTPL level 2 students 2015

Compiled by Prof Rocky Sir Page 6

Difficult I.Q on Databases, asked to SCTPL level 2 students 2015

Compiled by Prof Rocky Sir Page 7

SQL> SELECT constraint_name, constraint_type FROM user_constraints WHERE table_name = 'STATE';

CONSTRAINT_NAME Type
------------------------------ -
SYS_C002811 C
PK_STATE P
SYS_C002813 R

SQL> ALTER TABLE state DROP CONSTRAINT SYS_C002813;
Table altered.

SQL> ALTER TABLE state ADD CONSTRAINT fk_state FOREIGN KEY (country_code) REFERENCES country;
Table altered.

Now you’ll create the CITY table. Notice the foreign key constraint is created with the ON DELETE CASCADE clause:
SQL> CREATE TABLE city (
2 city_code VARCHAR2 (6),
3 city_name VARCHAR2 (40) NOT NULL,
4 country_code NUMBER (4) NOT NULL,
5 state_code VARCHAR2 (3) NOT NULL,
6 population NUMBER (15),
7 created DATE DEFAULT SYSDATE,
8 constraint pk_city PRIMARY KEY (city_code),
9 constraint fk_city FOREIGN KEY
10 (country_code, state_code)
11 REFERENCES state ON DELETE CASCADE);
Table created.

